Example of finding surface area

Tuesday, April 6, 2021 4:03 PM

En

Recall: Area $(S)=\iint_{D}\left|r_{u} \times r_{v}\right| d A$

$$
\begin{aligned}
& r:\left\{\begin{array}{lc}
x=x & (x, y) \in D \\
y=y & \text { p } \\
z=x y & \text { unit disc }
\end{array}\right. \\
& r=\langle x, y, x y\rangle
\end{aligned}
$$

$$
r_{x}=\langle 1,0, y\rangle, \quad r_{y}=\langle 0,1, x\rangle \quad|\langle-y,-x, 1\rangle|
$$

$$
\text { Area }=\iint_{D} \sqrt{x^{2}+y^{2}+1} d A=\int_{0}^{1} \int_{0}^{2 \pi} \sqrt{r^{2}+1} r d t d r=\cdots
$$

$$
x^{2}+y^{2}=1
$$

Cut by the planes $z=y+1$ and $z=0$

Ex

Two ways:

$$
\begin{aligned}
& R_{1}: \begin{cases}x=r \cos t & 0 \leq r \leq 1 \\
y=r \sin \theta & 0 \leq \theta \leq 2 \pi \\
z=r \cos \theta & \\
R_{2}:\left\{\begin{array}{l}
x=x \\
y=y \\
z=x
\end{array}\right. & (x, y) \in D^{3} \\
\text { disc }\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Area } \left.=\int_{0}^{2 \pi} \int_{0}^{1}\left|\frac{\partial R_{1}^{l}}{\partial r} \times \frac{\partial R_{1}}{\partial \theta}\right|^{L} \right\rvert\, d r d \theta \\
& =\iint_{D}\left|\frac{\partial R_{2}}{\partial x} \times \frac{\partial R_{2}}{\partial y}\right| d A=\int_{0}^{\langle 1,0,1\rangle}\langle 0,1,0\rangle \int_{0}^{2 \pi}\left|\frac{\partial R_{2}}{\partial x} \times \frac{\partial R_{3}}{\partial y}\right|_{3}^{1} r d r d \theta
\end{aligned}
$$

